Improving mental models from visualizations: A relation set approach to design for dynamic content

Animation Processing Model (APM)

The APM details processing activities that viewers need to carry out in order to comprehend a complex animation (i.e., to build a high quality mental model of the referent subject matter).

Key features:

- The APM characterises animation processing in terms of five interrelated phases that are iterative and cumulative (although not necessarily strictly sequential)
- The processing activities involved are shaped by the perceptual and cognitive constraints / proclivities of the human information processing system
- These activities involve bottom-up and top-down processes that interact as the viewer is composing a mental model
- Perceptual processing (especially re dynamics) has a powerful influence on what information is extracted and made available as raw material for subsequent composition activity
- The ultimate quality of the resulting mental model depends on how successfully the viewer decomposes the animation's dynamic flux into relevant event units (phase 1 processing).

Applying the APM: Ant Locomotion

Ants are very familiar but most people don't understand their locomotion, which involves complex dynamics making it a very suitable application for the APM

Key aspects of ant locomotion are:

- Body is moved forward by leg pulls (flexion) and pushes (extension): 'drive' aspect
- Efficient continuous locomotion requires alternating leg tripods: 'prepare' aspect
- High quality mental model must properly integrate both these aspects
- Pilot: Comprehensive, uncued ant locomotion animation (figure 2.a) ineffective
 - Rich hierarchical dynamic structure means inter-representational competition for attention
 - Salience-relevance mismatches mean key information is missed (wrong attention direction)

Exploratory Study: Cueing Ant Locomotion

- Participants: Teacher Education Students (Elementary School trainees)
- Output measure: Manipulable physical ant model (figure 2.c performance video recorded)
- Study Design: 20 participants manipulate model before & after viewing cued animation (figure 2.b)

Figure 3. Results from exploratory study.

Next Steps: Relation Set Approach

- Rather than just treating symptoms, instead address fundamental cause
- If domain novices can't decompose comprehensive animations, don't require them to!
- Alternative circumvent APM phase 1 processing by providing pre-decomposed material
- Supply appropriate 'kit of parts' (relation sets) then help viewers compose in optimal way
- Relation sets are strongly related groups of event units that can be readily interconnected
- Viewer composition facilitated by assembling well designed and sequenced relation sets
- Progressive, cumulative assembly of relation sets to give higher quality mental models

Phase 1: Localized perceptual exploration

Parsing the continuous flux of dynamic information (decomposition)

Individual event units

Phase 2: Regional structure formation

Relational processing of local segments into broader structures (composition begins)

Dynamic micro-chunks

Phase 3: Global characterization

Connecting to bridge across 'islands of activity'

Domain-general causal chains

Phase 4: Functional differentiation

Characterization of relational structure in domain-specific terms

Functional episodes

Phase 5: Mental model consolidation

Elaborating system function across varied operational requirements

Flexible high quality mental model

Figure 1. Animation Processing Model (Lowe & Boucheix, 2012)

Figure 2. a) 'Uncued' ant locomotion; b) 'Cued' ant locomotion; c) Manipulable physical ant model.

